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WATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO. 782

STATUS OF WING FLUTTER*

By H. G. Kussner
SUMMARY

This report presents a survey of previous theoretical
and .experimental investigations on wing flutter covering
thirteen cases of flutter observed on airplanes. The 4i-
rect cause of flutter is, in the majority of cases, at-
tributable to (mass-) unbalanced ailerons.

Under the conservative assumption that the flutter
with the phase angle most favorable for excitation occurs
only in two degrees of freedom, the lowest critical speed
can be estimated from the data obtained on the oscillation
bench., Corrective measures for increasing the critical

speed and for definite avoidance of wing flutter, are dis-
cussed.

I. INTRODUCTION

The forced oscillations on airplane wings are oscil-
lations created solely by the air stream and have as a
rule nothing to do with the vibrations set up by the in-
ertia forces of the engine. They are therefore best des-—
ignated by the term "flutter' since they revert to the
same underlying causes as the fluttering of a flag.

Flutter starts at the so-called "critical speed,"
which depends chiefly on the oscillation frequency and on
the wing chord. The lower the frequency and the smaller
the chord, the lower the critical speed will be. The os~-
cillation freguency of a wing, in turn, depends on the
stiffness and on the mass of the winge

Flutter in‘an air-.stream is possible only when a .
plate - in whole or in part - is free to rotate about at

*"Augenblicklicher Entwicklungsstand der Frage des Flﬁgel—

flatterns," Luftfahrtforschung, October 3, 1935, DpPpe
193-209, )
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least two axes or, which is the same, has at least two de~
grees of freedom of oscillation. '

A wind vane of sheet metal made to rotate about one
axis only does not flutter. However, when the flagpole is
not rigid but free to swing laterally, theredy pivoting the
vane about an axis below it and parallel to the wind, flut-
ter is possible. If the vane is of cloth rather than metal,
it can turn about infinitely many axes and is therefore
particularly susceptible to flutter. So also is a wind
vane made of two pieces of sheet metal hinged together, be~
cause then the flagpole and the hinge line between the two
pieces form the two axes of rotation,

A similar condition exists when mounting a rudder R
with tad H to a practically rigid fin F (fig. 1). The
two axes of rotation are A; and Az. With such an ar-
rangement flutter has actually been observed (reference 1).

Far more importance, from the practical point of view,
attaches to the case of an airplane wing fitted with an
aileron. When oscillating, the wing turns about some nodal
axis which may, for instance, coincide with the wing center
line or the axis of the strut connections. Besides, the
aileron itself can turn about its hinge.

The first records of wing flutter go back to the ear-
ly days of flying, when the lateral control obtained by
twisting the wing tips, was abandoned in favor of the aile-
ron-control method )

During the World War several cases occurred where
flutter caused the ailerons to break and tear off, ILike~-
wise, almost all cases observed later on disclosed upon
investigation, that the ailerons were the cause of the ac~
cident. Even a rigid plate can flutter, as stated above,
when free to rotate about two axes, If the wing tip bends
and twists simultaneously, it can flutter even without ai-
lerons, although this case is much less frequent than the
one described first, '

In the following, thée results of past investigations
on wing fiutter are given without resorting to mathematical
deductions, while one section contains a discussion of the
theoretical relations.
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II. DEVELOPMENT OF METHODS OF ANALYSIS

The exploration of the causes of wing flutter is
marked by the diversity of methods employed with'a view to
obtaining technically useful solutlons of this extremely
compllcated problem.‘

1. Theorem of ‘Linear leferentlal Equatlons~
for Steady Aerodynamlc Forces

In the first flutter 1nvest1gat10ns, ‘the air loads on
the oscillating wing were assumed to-be steady and depend-
ént .on the dynamic angle of attack;, theé dynamlc angle of
attack being defined as the angle bétween the wing chord
and the momentary direction of motion of the oscillating
wing. Some authors also took inte adccount the 1ift due to
dynamic profile camber. A wing osclllatlng about some ax-

"is, while its wing "chord describes a curved surface line
in flight, is identical with a wing in steady flight Whose
profile curvature’ changes at measured 1nterva1s. :

This substitution is;'in.fact; strictly cérrect.
Even these elementary assumptions afford a physical expla=-
nation of the phenomenon of flutter through a system of
linear differential equations, the number of which depends
on the number of degrees of freedom. -Flutter is possible
whenever undamped oscillations of constant amplitude, i.e.,
harmonic osclllatlons, ‘are possible. ’ Routh's discriminant
thereby served as a’ Crlterlon from which the critical Speed
may be computed. - : ~

The first calculatlons of this kind were made by
Blasius in June 1918, at the request of the Inspection
Section of the German Air Corps (reference 2), incident to
the investigation of the flutter .on the lower wing of the

’ Albatros D3 blplane which, having only one spar, was of

" low torsional’ stiffness. There were no ailerons on the
lower wing. The acecidental c1rcumstance whiech prompted
the investigation of that particular case at all, was due
to the fept“that,at.that time the significance .of the ai-
leron as profoter of flutter; was not sufficiently appre—.
ciated. Similar investigations were subsequently made. by
Ve Baumhauer and Koning, Bairstow, Frazer and Duncan,
Blenk and Liebers, Hesselbach, and were extended to include
oscillating ailerons (references 3 to 14).
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Indeed, the calculation of the simple elastic—mass os~
cillations of an airplane wing on the oscillating bench,
stipulated a number of simplifying assumptions. Other sim-
plifying assumpiions consisted in disregarding the energy-
consuming, unsteady svstem of vortices and the premises of
material damping proportional to the rate of deformation.
The accuracy of such calculations therefore is, as a rule,
quite small. Humerical agreement between calculation and
experiment has been obtained anly in cases where the as-
sumptions could be made to fit the particular case.

Agreement was more readily obtainadle on cantilever
than on braced wings. At first it was believed that can-
tilever monoplanes were particularly susceptible to flutter,
but subsequent experlence proved otherwise.

One 1mportant result was the following rule: The mass
axis of the wing shall lie ahead of the clagbdic axis if
feasible; the aileron c.g. shall lie in its hinge axis in
order. to avoid flutter. o

2. Calculation of Vortex Separation

Whereas in the early stages of development, wing flut-
ter was treated as a mechanical problem, the aerodynamical
side now received more attention and it was attempted to
trace the source of the unsteady 1lift of the oscillating
wing and the correlated separation of vortices, at least
for the case of two~dimensional flow.

The problem of the oscillating wing was first attacked
by Birnbaum (references 15 and 16)., He introduced the im-
portant concept of the reduced frequency , which is 11
times the ratio of wing chord to wave lengths. If n 1is
the oscillation frequency (in minutes), ¢, the wing chord
(in meters), and v, the flying speed (in kilometers per
hour), the reduced frequency is: : '

© = 0,06 7w 8L (1)

The air loads on the oscillating wing are functions of this

nondimensional parameter. Following the example of Prandtl,-

Birabaum replaced the wing by a system of bound vortices
and postulated that the sum of bound and free vortices must

remain constant with time; he obtained an equation which he .

could solve for small values of the reduced freguency
W= 0.12, Beyond this point his development was not con-
vergent. '
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This solution, ‘however, was unsuitable for 'the .eluci-
dation of -the problem under counsideration, because wing
flutter always occurs at mdterially higher valués of w.-
Kussner found the general solution of Birnbaum's equation
and extended it to include the case of the co-oscillating
aileron (reference 17). Since:the creation of harmonic
oscillations is dlways considered as the oscillation cri-
"terion, it seemed natural to write the equations from the
very first: for harmonic oscillations,.which offers the
added 'ddvantage of utilizing the. labor-saving method of
complex pregentation. .The oscillation criterion- theén is-.
the disappearance of the éomplex denominator determinant,
which yields two equations for_ calculating the oscillation
frequency and the critical speed. This obviates the use
of the linear differential equation and Routh's discérimi-
nant.  One particular advantage accruing from the use of:
~the harmoni¢ oscillation is that the material damping can
be introduced in a simple and physically correct mannér as
phase difference of the elastic force. This possibility
does not exist with the linear differential equation, where
it is even necessary to make a physically incorrect assump-
tion of the damping in order to obtain a 1inear.equation.

On this basis 1t was then p0531ble to calculate sever—
al examples of an oscillating flat plate in order to elu-
cidate systematically the  influence of mass distribution,

"elastic forces, and material damping. It was found that’
with two degrees of freedom - bending and torsion - the
.eritical speed depends chlefly on:

1. The tor51ona1 osc1llat10n frequency of the wing.

2. The backward pos1t10n of the c.g.~of the W;nb.
3. Thé nmaterial: damplng.

The result of material damplng is that flutter is
possible only up to certain maximum w, In oscillations
at higher w, the energy obtainable from the air stream
would become inadequate for compensating the damping losses.
This rule holds not only for the %two degrees of freedom un-
der discussion - bending and torsion - but is of general
validlty, as will -be shown later.mﬁqa“ :

Theoretlcally the effect of material damping is so
much greater, as. the ratio- of bending stiffness to tor-
sional stiffness is higher, which is.approximately egquiv~
alent to the ratio of wing chord to length ef overhang.
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As the total damping is not accurately determinadle, no
fairly close agreement can be expected between calcula-
tion and observation except for cantilever wings of high
agspect ratioc. ’

Similar investigations have been made in England.
Glauvert calculated the unsteady air loads on an oscillat-
ing wing for the two degrees of freedom - bending and tor-
sion (reference 18). He proceeded from H. Wagner's con-
cept of the area of discontinuity; but as his numerical
calculations extend only to ® = 0.5, they are insuffi-
cient for the mathematical treatment of flutter, with its
much higher ® values. '

Duncan and (ollar extended the calculation to a wing
‘oscillating with increasing amplitude (reference 19),
Lately, Theodorsen has calculated the air forces on an os-
cillating airfoil (reference 19a).

3. lodel Experiments

liodel experiments are another means of investigating
wing flutter, but if such model tests are to afford prac—
tical conclusions the models must be constructed dynamic-
ally similar. Dynamic similarity is the more difficult to
attainr as the model scale, i.e,, the model, is smaller.
Since the model scale depends moreover on the jet diameter
of the available wind tunnel, the dynamic similarity was
disregarded at first and the simply constructed model
wings were mounted in the air stream to a wall represent—
ing the plane of symmetry of the wing (references 9, 22,
and 23). Such models were sufficient for exploring the
effect of c.g. position, damping, and mass unbalance of
the aileron. But the values of the reduced freguency ob-
tained in these tests arec considerably less than the ex-
perimental values cited Delow.

The British have investigated a great number of ac-
tual cascs of flutter besides model testing since 1925,
and have shown great skill in their choice of assumptions
which afforded agreement between calculation and observa-
tion (references 7 to 13). Model experiments were fre-
quently nsed as basis for computing the still unknown
damping forces, the linear differential equations forming
the starting point, while Routh's discriminant was ex=
pressed as determinant, whereby some fields of the deter-
minant remained empty. '



I
v

+

N.A.C.A. Technical Memorandum No. 782 7

The method of calculation given in reference 17 was
checked at the D.V.L. by wind-tunnel experiments on model
cantilever wings, which were, of course, fairly heavy and
as a regult, oscillated at a lower reduced frequency
w=< 0,3 (reference 22). The observed critical speed on
five model wings was from 14 to 24 percent higher than the
theoretical, which may be attributed to the flow being
other than two-dimensional and to the energy absorption of
the disregarded trailing vortices.

Subseguently two dynamically similar models of the
He 60 type were constructed at 1:5.6 scale with a span of
2e4 meters. These model tests were intended to trace the
cauge of the accident described elsewhere and to test the
efficacy of certain structural changes with a view to pre~
venting flutter. The problem was solved, although a num-
ber of unexpected difficulties were encountered in this
first attempt at constructing dynamically similar models.,
The highest reduced frequency obtained in the tests was
0.76, a figure which is fairly close to the probable w =
0.93 at the time of the accident., Since complete dynamic
similarity is not attainable and the model usunally has more
damping than the full-scale wing, the expected ®w value
for the model will in any case be less than for the fulle
size wing.

4, Statistical Investigation

Admittedly, the methods of investigation described so
far suffice to explain observed cases of flutter and to
prove the underlying causes of such flutter, wherein the
actually observed critical speed always constituted a
check on the correctness of the assumptions. But these
methods did not lend themselves to computing the critical
speed on a new type of airplane within a fair degree of
accuracy, particularly when applied to braced wings. Any
further analytical treatment of flutter was precluded,
since it was impossible to compute the purely elasti¢ os-
cillations of a wing on the stand with a reasonable amonnt
of paper work, unless the construction was fairly simple,
such as monospar, cantilever wings. As a result it was at-
tempted to establish a simple dimension rule, suitablec for
practlcal use- by the designer, to prevent wing flutter due
to torsion within the normal speed range.

Since the wing mass and its backward c.g. position
are little amenable to influence, aside from the fact that
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the naterial damping should also be considered as predeter—~
nined, the only valid means for raising the critical speed
is:-the torsional stiffness. The German design specifica-
tions carried a provision for torsional stiffness as far
back as 1918 for army airplanes. " The angle of twist in
the term1na1 dive was not to exceed 5%; this was reduced
to 3.,5° in the 1926 design sneclflcatlons. However, this
was primarily with a view to static torsional stability of
the wing rather than to wing flutter., With the increasing
use of airfoils with fixed c.p., this requirement bDecame
useless, '

The 1930 specifications contained a rule of thumd for

torsional stiffness, based on a few theoretical examples
and sinilarity considerations {reference 17).*

a
D(y) = Mg g5 2 & po WP F(y)® (kem?) - (2)

In this formula, Xk was at first put at k = 0.12 to
0.24, but subsequent calculations brought about a change

to k = 0.5 (1934 design specifications). With this as-
sumption it is already very probable that the true critical
speed lies above that given in formula (2). It was there-—

fore permissible to introduce the terminal diving speed
v, 1ia formula (2).

It is worthy of note that this formula, originally
merely intended for the degrees of freedom - wing torsion
and bending - proved practical also for a number of air-
foil-~aileron combinations, because the observed maximum
values of the reduced frequency for this type of oscilla-
tion are of the same order of magnitude as the frequencies
stipulated for wing bending and torsion.

Roxbee Cox checked formula (2) against ten actual
flutter cases {references 20 and 21). He applied torgue
Mg at the wing tip A~A, measured the angle of twist 0,

and conputed. therefrom the constant

k! = 2 29 (3)

Itg numerical values are given in table I.

*Por symbols, see section IV, 1l.
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,,TABLEG;,f?gygiogalwﬁtiffpees and Flutter N

enType""e _F(Y)_'g:tm 'vk', -k!A . g :

N _ m? n kn/h | : B R

' Gloster "gamecock! | 6.68]| 1.60| 258.|0.135! 0,405
Gloster"GamecocE'ln . . N T
pull-out - ' 6.58 | 1,60 403 | .074| .224
Gloster "Gorcock", wood 6.58 | 1.60| 290! ".106| .318

Gloster "Gorcock", metal| 6.58| 1,60 217 | .257] .771

Short "Satellite! | 7.e7| 1.68] 1451 .033| ..066
¢loster "Grebe 6.54| 1,60 | 258 | .116|  .348
Desoutter Mark II . 6.97 | 1.55| 225 .205| .590
Martinsyde F 4 . 6,08 | 1.68 | 323 | ".098| .294
DeHavilland "Puss Moth' | 8.80 | 1.83| 314 | .129| .258
Simmond "sPartan&f 3 5.02 | 1.37 |+ 274 | .072 215
n® X 10.7639 = sq}ft. T 1a/h X 62187 = mi./hr. T

: The characterization of the torsional stiffness solely
through angle of twist at the tips is a- rather summary pro-
cedure. -“Consequently, the kt values scatter con31derab1y.
If the increase in angle of twist at the tip of a monoplane
wing is twice as great as the mean value over the whole
wing and three times eS'breat for a biplane wing, then the
k wvalues given in the last column of table I are‘compara~
ble to the mean value %k = 0.35 (formula (3)). Only two
values lie above the maximum value of 0.5 stlpulated in,
the 1934 design specifications. ' It seems reasomable to
assume that these two cases at least involve flutter with
wing flexure and allerqn motion.,. Unfortunately the Brite

" ish report fails “to give the modes’of -oscillation and the
flutter frequencies. ‘Index values for the berding stiff=
nesses were .established in a s1m11ar manner.‘ However, it
serves no useful purpose to analyze these makeshift dimen-
sion rules, because section IV contains a method which af-
fords 'a better estlmate ‘of the critical speed. =

S e 0
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The stiffness formulas are makeshift substitutes for
the calculation of the purely elastic oscillation freguen-
cies of a cellule - a calculation wiich is often quite
difficult. This difficulty may be overcome by subjecting
the finished airplane to a static oscillation test. To
"“this end the airplane is elastically mounted, an unbalanced
rotor is attached below the fuselage and driven at varying
speeds by an electric motor, the mode of oscillation and
the frequency being recorded in resonance conditions.

Even when the data of such oscillation tests are
available, it is still -extremely difficult and tedious to
analyze the critical flutter speced for the three degrees
of freedom — bending, torsion, and aileron motion ~ because
the calculation still contains important simplifying as-
sumptions, especially that -of two—dimensional flow, as a
result of which the possibility of error should not be un-
derestimated. It is true, however, that this error is
usually on the safe side, as shown by the comparison be-
tween calculations and model tests mentioned abvove, be-
cause any damping, neglected in the calculation, will
raige the critical speed. In such a calculation, made
with the utmost care, for the braced He %a monoplane a re-
duced freguency of ® = 1,13 " was established, the possible
error being estimated at =20 percent. The chief drawback
of the operation lies in the physically correct terms for
the complex determinant rather than in tqe evaluation of
the determinant.

Presumably no substantially greater mathematical accu-
racy can be obtained even after the calculation has been
improved and refined, because flutter does not always start
at the same speed even in the wind-tunnel test. The turbu-
lence of the air stream, the angle of attack of the wing,
and accidcntal small differences in the hinge friction -
all have some influence. Past exXperience has been that
flutter often starts in gusty weather, from which it may
be concluded that gust shocks have overcome the initially
excessive friction forces.

Once flutter has started - in this or some other man-
ner « it frequently continues until the pilot has reduced
the speed to two thirds or less of its original value.
Possible causes for this are: rupture of the aileron con-
trol cables, the consistently smaller proportion of hinge
‘friction to the total damping as the amplitude increases,
and lastly, the effect of change in angle of attack.
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wivi oo Another fact shoi1ld be mentioned in this connection.
Atwvery . low amplitndes the laws of potentlal flow do mnot
hold - because then the viscosity of the air is-no longer
negligible., GConsequently, the.-air forces are smaller for
very small amplitudes than they should be according to
the pdotential theory, and therefore do-not- induce.flutter.

. Thig effect was observed by Birnbaum (reference 15, p.-
292) . It apparently:is a boéoundary-liuyer effect. The wing
flops.around, "so to speak, in its boundary 1ayer,.without
encounter1ng any res1stance. ’

In,fllght free'from.050111ationsvand-at‘uniform speed
through still air; a:wing could exceed its critical speed
by ahy.amount without starting to flutteriy It would take
a.shock of a certain minimum sizée, e.g2., a-gust shoeck, to
sstart flutter which, on the other hand would, of course, then
be extremely violent. Wotadble in this connection is fthe
fact that flutter has often been observed during or directe
ly following a pull~out from a steep dive, particularly
in vicious cases. .In a normal, mild pull-out firom high
speeds, only.small changes of angle of attack are possible,
It is improbable that the quotlent d ca/da on which the.

air forced depend, changes very mateérially within such a

small range of angle of attack., One may suspect, there-

fore, that the disturbance of the boundary layer during

transition from gliding to pull-out or pull~out to level-
T off was the trigger effect in thesec cases.

Summing up these facts deduced from experience and
considering in particular the great amount of time re~
*- quired for the calculation, which is not justified by the
small degree of accuracy, one comes to the conclusion that
‘the analytical method, while adequate for explaining the
fundamental rclations, is scarcely suitable’ for the predic-
tion of the critical speed of a new type of alrplane.

Once a physical process is no 1onger amenable to ana-
lytical treatment because it contains variables which can-
not be observed and numerlcally defined, then it must be
explained statistically, based on a large number of obser-—
vations. This statistical method., indicated during the
formulation of the " stiffness formula (2), can now be ap-
Plied in a more comprehensive mannér t¢ the problem of
wing flutter, because within the last few years a number
of cases of flutter have been investigated in detail, even
though this number is’ ‘as yet not very large from the point
of view of statlstical research
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_ The most important parameter introduced in the analyte
ical treatment is the reduced frequency. An attempt was
therefore made to determine the reduced frequency in the
observed cases of flutter.

. One may differentiate between "mild" -and “vicious"
casess In mild cases flutter occurs with small amplitudes
which are well below the ultimate strength of the wing.
The flutter usually stops at a speed slightly below that
at which. it started, so that the flutter may be stopped
very quickly by pulling the stick back. These mild cases,
while few in number, can be demonstrated with comparative-
ly little danger and are therefore suitable for flutter
investigations in free flight., A test of this kind made
on the He 46c, is described elsewhere in the report. The
recorded air speed, frequency, and mode of oscillation in
flight affords the true value of the reduced frequency and

. the ratio of the amplitudes for each degree of freedom,

This determination ig more difficult in the vicious
cases. In these cases flutter is, in a way, actuvally de-
layed Dby the very causes cited above and does not start -
until the theoretical critical speed has been exceeded;
then, however, it begins with such violence as to cause
failure of the wings or ailerons. If the airplane is still
able to land, it is repaired after the flight and subject-
ed to an oscillation test. The dangerous mode of oscilla~
tion is that at which the lowest frequency is accompanied
by torsional oscillations of the wing or ailecron for the
reason that, aside from wing flexure, it requires one of
these two degrees of freedom to give increasing amplitudes.
However, this does not imply that flutter must occur at
the freéquency observed in the oscillation test, because the
air forces existing during flutter may modify the mode of
oscillation and the frequency. In particular, a differ-
ence in phase angle is always to be expected between bend- .
ing and torsion, because it is only under these conditions
that the energy for increasing the amplitudes can be taken
out of the air stream, Even so, the oscillation test af-
fords a certain basis, which is the more reliable as the
resonance conditlon appearing in the oscillation test is
more definitely expressed; i.e., as the damping is small-
er. (See section IV, 4.)

If the airplane is destroyed by the accident, another
airplane of the same type will be subjected to the oscilla-~
tion test. The flight speed at the time of the accident
can rarely be given very accurately for obvious reasons,
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In serions accidents one may have to rely on gtatements of

. oyew1tne ses on the éround.

The p05s1b111tv of errors 1ntroduced when determ1n1qg

evthe reduced frequency is therefore great for the vicious

cases. It is also nedessary to decide whether the calcula-~
tion of the reduced frequency is to be effected at the

speed at which flutter started or at which it stopped.

But since the start of flutter is decisive for flight op=—
eration, the speed at incipient. flutter is customarily pre-
ferred. In this manner,the.observedvvalues discussed in-
the next section have been obtained. . Disregarding the
possible errorg, they range between ® = 0.58 and w = l.14,
from which it appears that the reduced frequency in new
types of alrplanes will not exceed Wy = 1, 14.

‘Testing an airplane on the oscillation bench and ob-
serving the dangerous mode of oscillation with the fre-
quency n, the lowest possible value of the critical speed
can be roughly estimated on the basis of the assumed maxi-
mum value ; of the reduced freguency. If -t is the

mean chord of the outer part of the oscillating wing, the
lowest possible value of the critical speed is

n ot ) ‘
vy = 0.06 T —(;)-{1-’3 ¥m/h (4)

ObV1ously such a statlstlcal appralsal is Worthlegs unless
the particular type of airplane is not substantially dif-
ferent from-all the airplanes which showed flutter in the
indicated range of reduced frequencies by having incorpo-
rated special features vhich minimize flutter hazard.

When these investigations on flutter were started, the
probability of finding such a type of airplane was very
small, but in time there will be an ever-increasing number
of types on which such preventative measures may be effect
ed with at least the partial success of lower reduced fre-
quency.' This being so, the rough statistical estimate may
be replaced by an improved method (sectlon IV) which per-
mits the 1nc1u51on of proved preventatlve measures.

For mass—-balanced ailerons or wings without allerons,
the lowest possible critical speed is.higher, and the re-—
duced frequency consequently lower, than the maximum value
given above. Practical data are very scarce on this sub-
jects because in all cases of flutter descéribed hereinaf-
ter, the ailerons contributed to thé growth of oscillations;

.
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at least, it was impossible to state whether in one case

or the other, flutter would also have occurred if the aile-
rons had been rigidly connected to the wings. The one case
of flutter without aileron which had been definitely estab-
lished, prompted the first investigation of flutter without
aileron (section II, 1). '

Faturally, as the speed of airplanes increase, the re-
gion of flutter without aileron will also be reached more
frequently, and any appraisal of the critical speed based
on the static oscillation must allow for this possible mode
of oscillation also. ' '

III. RESULTS

1. Analysis of Observed Cases

a) Braced DP 9 (references 4 and 24).- The strut is
short, so that a long overhang exists.,. This model devel~
oped two cases of vicious flutter in the spring and autumn
of 1925, starting during pull-up from a steep glide at
about 180 km/hs In one case it led to complete fracture
of the wing; in the other, to fracture of the ribs in the
overhang and of the aileron control cables. In gusty
weather it started a slight flutter at 135 km/h.

After the wing was mounted on a rigid test frame, it
showed a flexural oscillation freguency of 548/min., and a
torsional oscillation frequency of 494/min. The frequency
of the free oscillation may be rated at 520/min. The wing
chord was 1.5 m; the aileron chord 0.32 m; and the aileron
Ce&s was 126 mm behind the hinge line. The reduced fre-
guency 1is

520 X 1.5 _ .82

W = . 8
0.1885 180

b) Braced He 8a monoplane.—~ This airplane crashed in
the fall of 1928, duve to fracture of the wings during an
exhibition flight. From the reports of eyewitnesses, it
seems quite safe to conclude that flutter was the cause.
The flight speed is estimated at 350 km/h. An airplane of
the same type was tested on the oscillation stand. The
dangerous mode of oscillation lies probably at 540/min. ,
and has a nodal line running from the rear strut fitting
toward the point where the curved tip Jjoins the straight
leading edge (fig. 3).

m X 39.37 = in. mnmn X .03937 = in. kn/h X .62137 = mi./hr.
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The wing chord was 3.0 m, the aileron chord 0,3 m,
the aileron c.ge was 50 mn behlnd the hlngo Tine., The re-

"duccd fregucney st o

X 3.0

_w = 0.,1885 240 *2 = 0.87

350

.¢) _Braced L 78 blplano;"mhls model, of which quite a
nunber had been built, had often been dived at 350 km/h,
when in “May 1930, it developed a ‘case of mild flutter while
flying at a speed of about 210 km/h. It started with an
oscillation of the strut between the lower and upper aile-
rons at great amplitude, then the wings fluttered so se~-
verely that the pilot was unadle to hold the stick, As
soon as tvhe pilot cut his speed, the oscillations died

‘out. The dangerous mode lies at 860/min. The lower wing

oscillates in bending, the nodal line being near the strut
fittingse.

The aileron connecting strut shows severe lateral de-—
flections which cause the upper- wing ailerons to oscillate
in torsion (fig. 4).

The mean chord of the overhang of the lower wing is
1436 m; the aileron chord from hinge line to trailing ecdge
is 115 mm; the aileron c.ge is 23 mm behind the hinge line.
The reduced frequency is ‘ ’

“

w = 0.1885 889 X 1,36 _ 4 45

d) Unbraced He 60 biplane.- This model is a rather

* less conventional design. The lower wing is braced against
‘the floats while the two struts on each side reach only to
"the front spar. No wire bracing is used between the wings.

While in other versions of this type the spars had been

-made of wood, this particuldr type (He 60) utilized steel,

providing the same strength for the same spar height. The

.ratio of Young's modulus to ultimate strength for steel

being substantially lower than for wood, it assured low
natural frequencies of the wing. In addition, the aileron
system had an unbalance of 75 cm kg. Apprehensions were

.therefore voiced from the very beglnn1ng that flutter might

occur at speeds lower tnan the prescrlbed diving sPeed of
365 km/h,

In the attempt to reach the Drescrlbed diving speed,
the airplane crashed in December 1931 as a result of a
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torn uﬁper_wing. Acbordihg\to the testimony of eyewit-
nesses, it was a case of dangerous flutter., The speed was
estimated at 350 kum/h. :

The dangerous mode lies at 780/min. The nodal line
of the upper wing was in the overhang close to and almost
parallel with the leading edge in the inner bay; at approx-
imate wing center it runs parallel to the wing axis (fig.
5)« The wing chord is 2.2 m; the aileron chord 0.4 n.
The reduced frequency is

® = 0.1885 =222 = 0,93

e) Braced He 46¢ biplane.= The He 46c¢c is a braced bi-
plane with a small lower wing developed from a high~wing
monoplane. After a long period of service, it finally re-
vealed a nild case of flutter at 260 km/h which, however,
-disappeared inmediately as soon as the speed was reduced.
It was therefore decided to obtain some oscillation photo-
graphs in flight with this airplane, taking, of course,
proper precautions. The records showed the flexural oscil-
lation of the lower wing, coupled with turning of the un~-
balanced aileron system as the cause of the increase; the
aileron ce.ge was 52 nm behind the hinge line. The aileron
chord of the lower wing is 335 mm, and that of the upper
wing, 500 mm.; the wing chord is l.4 n on the lower, and
240 ©n on the upper winge.

The oscillation test disclosed bPetween 520 and 755/
nin., a series of antisymmetrical oscillation modes of the
whole cellule about the longitudinal, vertical?ftranqverse,
axes, accompanied in part by severe aileron motions {aile~
~ron control by means of torgue tubes). The remarkable fea-

ture is tihat these modes do not induce flutter. This may be
attributable to a slight mass—coupling with the aileron os-
cillation as a result of the small amplitude of the aile~
ron hinge line and the shifting of the location of the
nodal line closer .to the trailing edge. Possibly the damp-—
ing of the antisymmetrical oscillations of the whole cel-
lule igs greater: The first symmetrical natural Tending
frequencies of the wings lie between 815 and‘895/min. The
nodal line of the lower wing lies at 50 percent or more of
wing chord forward of the leading edge (fig. 6). The reso~
nance conditions are not pronounced.

But the flutter frequencies recorded with the opti-‘
graph, lie in this range., Flutter started with a frequeney
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of 830~860/min., and dropped to 810/min. as speed and am-

. plitude increased. The increase of flutter amplitude was

probably favored by the method of mounting of the.aileron
connecting strut, which sloped about 25° toward the plane
of the struts. Thus bending of the upper wing caused mo-
tion of the lower aileron. '

The flight records ranged between altitudes of from
4,000 to 600 m, so as to establish the effect of air densi-
ty. Flutter started at 260 to 275 km/h. . The reduced fre~
quency of the lower wing was found at

® = 0.87 (3—> o (5)
| po .
The air-density effect p 1is therefore relatively small.

f) Cantilever biplane KL14 "Schwalbe".- This type,
built since 1927, had been in service guite awhile when, in
the spring of 1932, several of them developed flutter be-
low the level top speed which could not be called mild
because it resulted in fracture of the ailerons. A4n air-
plane of this type was therefore gubjected to an oscilla-
tion test.

The dangerous mode lies at 675/min. It is the symmet-
rical fundamental bending mode of both wings (fig. 7). The
nodal line lies far forward of the leading edge of the wing.
The ailerons are in phase opposition; their chord is 240 mm,
their ce.ge 18 103 mm behrind the ainge line., This results
in a strong mass coupling between wing bending and aileron

-motion. The mean chord of the extremely oscillating wing

tips is 1.3 m. The experiments were temporarily inter-
rupted to permit the airplane to take part in an air cir-
eus. During this air circus in July 1932, it was stunted

at speeds up to 200 km/h without developing flutter; -but as
soon as the pilot started to land, it suddenly began to
flutter very severely at 145 km/h, which endod in the
breaking of the ailerons and damage to the plywocd covering.
The flutter continued up to 100 km/h speed. This case

shows very clearly the unpredictadility of fiutter.

The reduced frequency at start of flutter is

675 X 1.3 _

(.Dz.,
0.1885 145

1.14
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while at the end it reaches the high value of g = 1,65.

g) Cantilever Do 10 monoplane.— This is an all-metal
high-wing design. The three-spar wing is braced by short
struts. The cantilever length is 72 percent of the semi~
span. The leading edge of the wing is approximately a
semiellipse, the trailing edge is straight. During a
flight on September 9, 1932, it developed such a severe
case of vicious flutter at about 450 km/h, that both wing
tips broke off to the length of one chord. While level-
ing off from a dive at 2,500 m to 1,500 m, the pilot noted
oscillations on the ailerons as far as the wing tips which,
within about 3 seconds, resulted in broken wing tips and
ailerons. The pilot was able to land safely and the air-
plane was subsequently repaired and tested on the oscil-
lating stand.

The wing reveals -a series of oscillation modes in the
500 to 1,250/nmin. frequency zone, whereby the nodal line
gradually shifts from the front toward the rear spar. Al-
though the aileron, with a chord of 355 mm, has its c.g. 41
mm behind the hinge line, thege modes do not induce flut-
ter because the aileron control is very rigid (push rods),
s0 that the aileron motion does not dbuild up to large an-
plitudes at these frequencies. The dangerous mode lies at
1,400 to 1,500/min. At 1,400/min.the nodal line is exact-
ly coincident with the principal line of failure of the
wing tips, which slopes 30° outward and backward from the
leading edge in the direction of flight. A%t 1,500/min.
the outer nodal line, in form of a quarter circle about
the wing tip, is in part coincident with the line of the
sccondary fallure, The inner nodal line runs from the
point of insorsection of the trailing edge and pianc of
struts at an anglc of 30° outward, and passes directly
Fhrough)a region in which the internal bracing was broken

fig. 8).

Withoutv the lines of failure as clues, it would in-
deed be difs " cuit in this cose to asgcerisin the dangerous
noCe from the gratic oscillation test alcnme. Ths next
section contuing verious factors whicn should help to fa-
cilitate this decision.

Another source of error lies in the estimate of the
mean chord of that part of the wing which oscillates most
severely, becaus=s of its pronounced taper in plan. Ap-
praising the nean chord of the severed wing tip at 1.6 m
and the flutter frequency at 1,450/nmin., the reduced fre-
quency is
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h) Braced L 102 monoplane.~ This airplane is the braced
high-wing types The wing structure is of duralumin; has
two spars, and is covered with fabric. The ailerons are
split. The aileron chord from ‘hinge line to trailing edge
is 300 mm; the aileron c.g. is 35 mm behind the hinge line.
With this ce.ges position, vicious flutter started at 290
km/h and . per31sted to 120 km/h. The rivets. of the ‘torsion
structure were sheared off from the outboard aileron hinges
of both wings. This explains perhaps ‘the rather extended
range of speeds during which flutter persists. With per-
fect mass balance, a speed of 340 km/h had previously been -
obtained without flutter. : »

The alrplane was then tested on ‘the osc1llat1n . bench.
Asymmetrical and symmetrical fundamental bending modes oc—
curred at 500/m1n. and 580/min. The natural frequeacy of
the ailerons lies at 73O/n1n. The dangerous mode is the
torsional oscillation of the w1ng at 835/m1n. The nodal
line runs over the entire span between front and rear .spar.
The aileron amplltudes are high (fig. 9).

. For a 1.56 m Wing chord, the reduced frequency at in-
cipient flutter amounts to . :

_ ox 835 X 1.56 e
w = . = Q.. .
> - p 1885 550 0485 .

as against the abnormally high 'wé = 2.05 ét its‘termina~
tion; the failure of the torsion structure itself may per—
haps have 1owered the flutter freqHEECV.

i) AC 12 E cantllever monOplane.~ This is a cantllever
high-wing design of wood with tapered wings. While compet~
ing in the 1932 International Challenge Contest, it devel~-
oped a mild case of flutter at 220 km/h, but only in rough,
gusty weather. In fair Weather it reached a speed of 270
km/h without flutter. ~

%

The mean chord of the oscillating wing t1p is 144 m;

"~ the aileron chord ‘is 300 ram; tne aileron cCege is 112 mm

bea1nd tne hlnge 11ne.

[
1

Tested on the osc1llat10d “berch, this airplane revealed
bendlng oscillations with very indefinite resonance condi-
tions at 585 to 830/min. freguencies. The dangerous mode




apparently lies between 800 and 850/m1n., because then the

aileron motion caused by mass coupllng and elasticity gqf
the control cables, has a phase difference of about 90

. against the bending oscillation; that 1s, is in resonance
with the bending osclllatlon (fig. 10). The reduced fre-
guency is = - ,

® = 0,1885 815 X La& = 0,98,

"3) Do 12 cantilever momoplane "Libelle".- This is a
hHigh~wing all-metal amphibian. The two-spar wing is ta-
pered 1n plan form. : ' : .

: The airplane showed vicious flutter on September 27,
1933, at 180 km/h. The oscillations started when the pi-
lot opened the throttle after leveling off from a glide.
.'The oscillations were so severe that one alleron jumped
out of its hinges and both wings were badly damaged, The
wing flutter was preceded by tail buffeting, initiated ap-~
parently when opening the throttle, and waich in turn
started the wing flutter. The pilot made a safe landing,
_however, after which the airplane was repaired and tested
on the oscillation bench.

The dangerous oscillation mode of the wing lies at
580/min., which at the same time is the principal resonance
mode of the horizontal tail surfaces. It is an antisym-
metrical bending oscillation; the nodal line starts at the
inner aileron and runs outwardly at an angle of 15° in the
direction of flight (fig. 11). The aileron oscillates in
torsion. The mean chord of the outer oscillating part of
the wing was estimated at 1.3 m; the aileron chord is 400
mm. The alleron is not mass-balanced; its cege position
was estimated at 100 mm behind the hinge line. The aile~
ton control cables are not very rigid. The reduced fre-
quency is '

580 X 1.3 .
W = 8 123 = 0,79,
0.1885 2202 0

k) M 28 monoplane.- This is a cantilever low—wing de-
sign, of duralumin with wings tapering in plan oanly.

After extensive testing, the airplane developed a mild
case of flutter at 220 km/h, which was started by the
(mass-) unbalanced ailerons. I% stopped when the speed
was reduced to 180 km/h. The pllot had the impression
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that the flutter started each time after a dump, even when
very slight.  .The engine r.p. m. was 1,750 at the beginning.
Later the alrplane was dived to 250 Lm/h at 1, 950 r.p.m.“
w1thout developing flutter.

The alrplane was then’ subgected to an oscillatipn
test. The wings have a symmetrzcal fundamental flexural.
oscillation at 480/min. and antlsym netrical bendlng oscil—
lations at 850 and 770/min.. The résonance points are very
clearly expressed. The dangerous mode seems to lie at
770/min., because this is the frequency at which out-of-

‘phase-oscillation of the ailerons is first notlced _which

likéns it much to the dangerous mode of the Do 12. The .
nodal line runs outward from a point near the inboard end

of the aileron at an angle of 10° in the direction of fiight
(fig. 12).

The mean chord of the outer oscillatimg part of the
wing is taken at 1.05 m, the aileron chord at 350 mm; the
CeZe is 140 mm behind the hinge line. The reduced fre-
quency is

© = 0.1885 220X 1.05 = o, 69,
It is planned to make flutter measureménts in flight on
this airplane in order to determine the flutter frequen-

cies exactly.

1) Biplane S 24 "Xiebitz".—- This is a biplane of wood

.construction, braced in one plane. In the spring of 1932,
-the airplane went into a 1ong, unexpected dive with a burn~

ing engine and started to flutter, finally breaklng ‘the
cellule. The calculated terminal velocity is 280 km/h.

Another airplane of the same type was subjected to an
oscillation test. A% 490 and 615/min. thie whole cellule
started to oscillate; at 825 and IOOO/min., the overhang
went into flexural oscillations. The dangerous mode lies
at 1215, because this was the frequency at which the aile~-
rons first revealed phase opposition, The nodal line runs
from the intersection of the strut plane and trailing edge
to the first third of the edge strip (fig. 13).

The.mean wing chord is 1.18Am, the aileron chord 240
mm, the cege of the aileron system is 21 mm behind the
hinge line. The reduced frequency is

1215 X 1.18
@ = - - . .
0.1885 580 0.97
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n) Biplane Ar 56 C.~ This is a braced biplane with™ a
-SmallerilowérAWing:‘ In a dive at 340 km/h. the airplane
started to flutter, which led to the beginning of a frac-
ture of the lower front spar as well-as of the plywood
covering on the lower side of the wing. Since the stick
did ‘et oscillate, the mode was symmetrical, -The chord of
the lower wing is 1.65 m} the cege of the alleron lies 45
-mm behlnd the hlnge 11ne. ' '

‘"The airplane was subjected to an oscillation test by
t h.e manufacturer. The bending oscillation of the lower
wing at 79O/m1n. was considered as: the dangerous mods. At
this-mode, the inboard part of the wing pivots roughly
about the front spar, ‘while the overhang bends. !

The reduced frequency is

790 X '1.65
Q) = = .72
0.1885 T 04

After finishing this report, flutter was again observed
after the ailerons had been completely mass~balanced and
were perfectly.guiet in the oscillatien test. Following
some minor changes in the shape of the aileron, it devel-
oped vicious flutter at 420 km/h leading to complete de~-
struction of the cellule, Thls ‘gives

W = 0.1885 Zﬁg_i—l—éé = 0.58

This might have been a case of flutter in combiﬁed'bending
and torsion, although not without some probable aerodynamic
coupllng effect of the alleron notion.
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TABLE II. Observed Cases

No. Type - S R m w
_ m m m min min |{ min ) S
1 | pP 9 1.5 |0.32{0.126]| 520 - - 180 | 0.82
2 | He 8 .0 | .42| .055| 540 { 290 | - 350 | .87
z | L vs 1.36| .20| .023| 860 | - 30 | 210 | 1.05
4 | He 60 2.2 | .41| .150| 780 | 910 | 40 | 350 | .93
5 | He 46 c| 1.4 | .27| .052| 845 | 550 | 40 | 268 .87

6 KL 1 A 1,3 24| ,103| 675 675 45 145 1.14

7 Do 10 le6 «30| .041 1450 - 60 450 <97
8 L 102 l1.56} .30 .035| 835 730 35 290 .85
9 AC 12 E| 1.4 <301 L1121 815 700 | 120 220 .98
10 Do 12 1.3 +40 | 100 580 460 50 180 79
11 M 28 1.05‘ «351 .,140| 770 | 1410 60 220 «69
12 S 24 1.18| .24 .02111215 - 70 280 .97

13 Ar 66 C| 1.65| - .051; 790 - - 340 72
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g TABLE IIa. Observed Cases
j : Mode of Rigidity Wing
: No. Type oscil- of Aspect struc—
; lation controls ture
i
! 1 DF 9 symmet- small vicious wood
i rical
] 2 H e 8 ] 1" 1t "
E 3 L 78 antisym- great mitd "
y metrical ' '
i
' -4 He 60 - - vicious metal
5 He 46 ¢ symmet -~ small mild wood
rical
6 X1, 1 A u " vicious "
7 Do 10 antisym—- great ! metal
metrical
8 L 102 - small " "
9 AC 12 E symmet- n mild wood
rical
10 Do 12 antisym— " vicious metal
metrical
11 ¥ 28 1 great milad "
12 S 24 - small viecious wood
: 13 Ar 66 ¢ symmet-
ri cal 1 i it

2. Conclusions
- The numerical data of these 13 test cases are append-
ed in tables II and IIa. The mean value for incipient
flutter is, according to table II:

Wp = 0.90 £0.12.

rlII-II ni (BT} I —— R - — o - -
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— ..A The. maJorlty of cases are V1c1ous"6ﬁlj 30 ﬁefcént
are mild (table IIa). ThHé structural material- does not
seen to have any effect.

When the stlffness of the allerons and their controls
‘is great, flutter occurs . in an antlsjmmetrlcal mode be-
] cause only tnen can the dilerons oscillate freely and
| transmit enerby. )

r . If the stiffness of the aileron control is small,

x "flutter ‘may also occur in a symmetrical mode, but then on-
ly at a frequency ‘high enough above the natural aileron
frequendy to ,permit motion in phase opposition. Oscilla-
tions of the whole cellule of a biplane about the vertical
and the transverse axis may not necessarily lead to flutter,
even when combdined with additive wing torsion. The danger-—
ous mode, however, is frequently the first natural mode

of the wing 1ndependent of the cellule,

. The reason for thisg ‘behavior lies in the damping of
the oscillations through the precessional moment of the
rotating propeller, Heretofore, all airplane oscillation
‘ tests have been, almost without exception, static tests,
iees, with the engine standing stille Under these condi-
tions, a number of cellule oscillation modes may develop,
during which the fuselage oscillates slightly in torsion.
In flight with full r.pem., the precessional moment of the
propeller damps such oscillations very effectively, so
that flutter is very rare. The KI. 1 A revealed such cel-
lule oscillations on the stand a2t the dangerous freguency.
The sudden entry of flutter when starting to land, was
probably attributable to the diminished damping of the pro-
peller as a result of the smaller r.pem, One two-engine
airplane tested on the oscillation bench manifested a
marked difference in oscillation modes, depending on wheth~-
er the engines were running or not. On the other hand,
purely symmetrical wing oscillations, during which the
thrust axis is merely translatory, do not prevent flutter
as proved by the Ar 66 ¢ airplane, :

Table II also gives the natural frequencies of the ai-
b -~  leron oscillations =n for various airplanes, together with
‘ the width of the resoflance curve An defining the damping
of the flutter oscillation. This width is measured at 71
percent of the maximum amplitude.
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IV. DETERKINATION OF LIMITING CONDITIONS FOR FLUTTER

- Section II shows that fuarther -analytical treatment of
concrete cases of flutter is impractical .because of the
many secondary circumstances which- are not amenable to nu~
merical treatment. Even so, it is useful from the point
‘of view of flutter prevention, to establish analytically
the limiting conditions undér which flutter is possible,

Flutter is obviously possible only when the oscillat-
ing wing is able to take energy out of the air stream in
order to equalize the ever-present damping losses. .For a
general survey, the calculation may be restricted to the
limiting conditions of energy absorption in two~dimensional
flow, ' '

The reduction of 1lift due to tip vortices of the os-
cillating wing tip, will have the effect of increasing
the damping and narrowing the range in which flutter is
possible. This additional damping effect can be estimated,
although it is neglected in the follewing derivation.

l. Notation

Al m stroke (bending) ampiitﬁde of @efodynamic)
neutral axis (quarter-chord point). -

B torsional amplitude of wing.

¢ deflection amplitude of aileron.

b m effective spaﬁ of oscillating wing tip.

bq m aileron span.

dF Gamping factor of wing.

dR damping factor of aileron.

D(y) kg n® torsionél stiffness of wing at abscissa y.
ey m distance from nodal line of wipg to center
lire of wing. s

E m kg energy of oscillating airplane.

!

Ep n kg energy of wing.
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En m kg energy of aileropt_
F m® “ﬁihgméréa;“ .
% g L dgmﬁ%ﬁg:phasg ang;e of wing oscillation,
h . damping phase angle of aileron oscillation.
k 1) stiffness constant. A ' L
2) m radius of gyration of wing section, referred

to nodal line.

% kp . m radius of gyration of aileron, referred to
} aileron nodal line,

1 m semichord of wing.

ly..ulg enefgylcoefficients.

Im m kg/s mean aerodynamic energy.

Lam n kg/s mean damping power.

Mg n kg torsional moment.
i m g sg/m mass.
mgp kg s®/m mass of oscillating wing tip.
! my kg s®/m aileron mass.
n 1/mina ‘ oscillation freguency.
n,  1/min. oscillation frequency at resonance.
An  1/min. width of resonance curve in oscillation
test.
g9 m absolute oscillation amplitude.
s "position of wing c.g. behind neutral poinf.

(quarter-chord point).

A, AR TR

Sy rosition of aileron c.g. behindvhihge iihe;
y t m wing chord.
! tq m aileron chord.

ma
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v m/s; km/h  flight speed.

¥y m coordinate along spane.
3 index of amplitude ratio'for winge.
3R -index of amplitude ratio for alilleron,

G
Moo= lt kg/m® specific weight of wing,

Ftp
v 1/s frequency of wing oscillation in radians.
o kg s®/m* air density.
o air density at sea level,
'r
T = = aileron chord ratio.
9 1) angle of twist.
2) phase angle between bending and torsional
oscillation.
g phase angle between bending and torsional
. oscillation of aileron.
X phase angle between torsional oscillation of
wing and torsiomnal oscillation of aileron.
Dieee Oy functions of aileron chord ratio.
W reduced freguency.
Wy maximum value of reduced frequency.

2. Aerodynamic Energy of Oscillation

With A ! denoting the stroke (bending) amplitude,
B and ¢, the amplitudes of angular motion of wing and aile-
ron; and index ! signifying the real part, index " the im-
aginary part of these amplitudes; a bar — their absolute
magnitude, the _time average of the aerodynamic energy of
oscillation is, according to (16) and (17):

*The theoretical development of,the.ensuing formulas is to
be published in a separate report.



:
i
i
.

e i St SRS e e s mm e

N.A.C.A. Technical Memorandum No. 782 29

Lm=%-ﬂpvu2 12 v [E® 12 + B2 1n + G2 1s
s (AYBY 4 ABN) 1g + (ATBY - AMBY) 1g

+ (ArCY + A'"gM") 15 + (A'C" - AVC) 1,

+ (B1C! + B"C") 15 + (B'C" - B"CV) 1g (6)

where the energy coefficients:

1y = 1 + ¢! - -
la = 1

" o
s = gty (0.0 Tpv R (14 1Y) + 0]

1"
la =1w—+2+T'

lg = L+ TV _ oy
(7

' n o, +0
le = L [0, Io 4 2278 (1 4+ 11) + 0]

[, Lt T! Dy + Dy 7]

w 2

11H 

1
lg = z—lﬁ [Og + Og+ Og (%— + 1+ T'>]

1 Qg 1 + T
lo = = [@5 + 352 (T“ - —73———>]

o

The functions T'(y), T"(y,) based on Hankel!s cylin-
der functions, are given in tadble III. The functions
@n(T) derived from trigonometrical functions, are given
in-table IV. TFrom these the energy coefficients 1, have
been computed for aileron chord ratios of T = 0.15, 0.20,
0.25 with.a 20-inch slide rule (table V)., The energy is
negative when taken out of the air stream.
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TABLE III. Functions T'(w), T"(w)

w {0 | 0.2 0.4 0.6 0.8 1.0

T |1 0.455 0.250 0.158 0.108 0,079

T | © -.377 -.330 -.276 - 233 -.201
® 1.2 1.4 1.6 1.8 2.0 o
il 0.060 0.047 0.038 0.031 0.026 0

il -.175 -.156 -.140 -.126 -.115

TABLE IV, Function &,(T)

T 0.10 0.15 0.20 0.25 0.30
o, 1.244 1.510 1.727 /1,913 2,076
o, 334 . 610 .935 1.299 1.698
D .164 .296 . 447 614 793
Dy .0264 L0719 .1459 .2518 .3924
O 1.080 1.214 1.280 1.299 1.283
dg .615 1.077 14577 2.094 2.612
Duy .0506 .1347 .2672 <4507 « 6860
®s .0079 .0192 .0400 0707 .1129
Dg .0459 1246 .2519 . 4330 . 6718
oy, .0546 .1803 4180 .7978 1.345
¢, .0056 .0281 .0876 .2128 4371
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TABLE V. Energy Coefficients

w 0.4 0.6 0.8 . 1.0 l.2 1.6 2.0

14| 1.250 1,158 {1.108 |1.079 |1.060 |1.038 |1.026.
o1 1 1 1 1 S S 1
1401425 |1.698 |1.817 {1,878 |1.914 |1.951 |{1.968

lgl 3,455 2.205 1.618 1,279 1.059 .788 « 628

15{0.,00829|0.00880{0.00904|0.,009160.,00923{0.00931|0.00935

lg|=+1773 |-.0106 | .0652 | .1059 | .1300 | .1561 | .1696

0.15

l,]1.534 .954 .688. .538 . 442 .326 .258
lg! .1926 .1934 .1928 .1939 .1941 .1942 1943
lg| .3757 .3796 .3815 .3825 . 3832 . 3840 .38456

153100195 |0.0207 |0.0212 |{0.0215 {0.0217 j0.0219 {0.,0219

g |=+1175 .0695 «1542 «1993 .2265 .25563 .2697

1a4769 1.104 798 «624 «013 «379 « 300

0.20
o
~2

lg| .2940 «2956 .2964 2967 2970 02973 2976

lg| .3854 . 3934 « 3970 «3993 « 4006 »4024 4034

11 3{0.0377 {0.0400 |0.0410 {0,0416 0.0419 {0.,042=2 [0,0424

16I~.0343 .1682 «2596 +3078 « 3374 « 3686 « 3841

0.25

l,{1.975 la235 « 895 « 701 «576 426 « 335

1tel <407 «410 <412 «412 413 -« 413 414

log| 3746 .5886 «39562 «3991 4016 «4045 | L,406°

o et ot G .

| N O——
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4" . - 3. Damplng

As the damplng energy Was not measured dlrectly 1n
the oscillation. tests,.the energy absorbed by material .’
damping and external friction must be estimated from the .
phase difference between elagtic force and deformation, .

. The previous assumption of a constant phase differ- | .
ence gives an elliptic hysteresis loop independent of fre-
quency, whiclhi agrees .closely with observed facts, The.
product of this phase difference and 1 equals the usual
logarithmic decrement. A detailed exposition of these. re-
lations will be found in B. v. Schllppe's artlcle (refer—
ence 25). A . . : :

The damping energy is obtaiﬁed from the relation

energy of damping-for a .complete cycle
mean energy of_oscillating system

2 g =

The phase anglesv g and h of the wing and of the aileron
oscillations may be -determined. from-the width of the reso~-
nance curves of the oscillation test. If the width of the
resonance curve An is measured at: 7l-percent of the reso-
nance amplltude (flg. 14), the phase anale is

g = e L . (8

o o . g

At higher amplitudes theiphase-ahgle'increases; the in-
crease being, as a rule, greater for wooden wings than
for metal wings. . S . . .

An exception to this is the damping due to friction
in the aileron hinge bearings. With constant frictional
moment -the damping is proportional to the (angular) ampli-
tude €, while the energy of the osc111ating alleron rlses
proportionally to ¢2.

By the 'same argument, the phase angle -of the ai-
leron is inversely proportlonal to the amplltude. . Thus,
at very low amplitudes, the phase angle of the damping can
be so great as to make flutter impossible. Flutter cannot
set in unless some outside cause imparts a momentum of a
certain minimum rise to the aileron. A4t high anplitudes
only the residuvual danping due to material damping of the
control cables remains. With careful installation of the
ailerons and cables this effect is less pronounced.
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The phase angles of wing bending and wing torsion
damplng may be considered as being about equal. Table VI
-~gives the. values.of phase angle g obtalned from oscilla-
tion tests with constant excitation and with impulse ex— .
citation (deflection tests). They are multiples of the.
values measured on smooth test bars, because in built-up
menbers develop additional losses.at.the jointss On the
average g = 0,061, - The phase angle of the aileron damp-

ing is according to (6) h = 0.20, and according to a res-
onance curve, h = 0,08, ' ' ‘

The mean energy content of the oscillating alrplane

‘at the dangerous node may be determlned by forming the in-
tebral .

__f.f Pa dm . . (9)

over the Whole alrplane, whereby p denotes the absolute

amplltude of the mass element dm measured in the oscil-

lation test, This cdlculation is so tedious, hoWever,
hat in most cases an estimate is preferable.

Vlsuallzlng the outer end . of the wing as a rigild
plate oscillating in torsion at amplitude B about its
nodal line while the aileron oscillates in torsion about

the hinge line at amplitude €, the energy content of wing
.and ' aileron 1is: o . . :

_ D2 2 2 2 2
Ep = %% [m &L+ m p LD (%; + eF2>] B
‘ " (10)
_. DR : 2 - T 2
ER = —2—- . [mR kR + P 1 \bqj Zlﬁ-] C
If the wing oscillates in pure bending, then %k = ¢ = o, -

B k = B e = A.

Very often the osc111at10n amplltude and the wing
chord are very variable near the tip. As the energy trans-—
fer involves the square of the amplltude,~1t 1s advisable
"in this case to form the mean values.

-2 3 ~' -
JE7 €. a4y

— 2
(4 %), = Tt ay
s s & (11)
b = J ATt ay
m -
/'K? tz dy ]
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Exactly corresponding averages must be formed for the am-
plitudes 3B and C. The nean damping energy is

_ . 1 — 1 2 3 2v 2
Ldm-v(g Epth ER) =4 mp v vl D (10((1F B +dp c°) (12)

For the sake of brevity, the following nondimensional damp-
ing factors have been introduced into equation (12):

M 2 2717
n k 1 or
dn = B A =
F € Mmoo ¥ B 8 1z
- L (13)
i = n np kR + @-12 ‘Eg
R mpe 1t b 4w b

Table VI gives damping factors for several airplanes.
The factor dy' applies to pure bending oscillation., The

torsional oscillation about the neutral point is estimated
at 0.4 dF‘ because the nass distribution along the chord

is not very unlike in the various types. The aerodynamic-
ally effective wing span b may be estimated fron the
dangerous oscillation mode. Only a portion of the outer
oscillating -part of the wing between wing tip and nodal

line or plane of struts can be considered as acrodynanically
effective, Dbecause the trailing vortices lower the efficlen-
cy of the wing tips as compared with two-dimensional flow.

It should be emphasized that this estimate of the
damping is quite rough and therefore merely affords the ap-
proximate magnitude of the damping energy. For this rea-
son, the direct determination of the energy of damping
from oscillation tests is very much desired.

4, Ratio of Amplitudes

In order to be able to compare the amplitude ratios
of the forced oscillations with those of the oscillation
test, the elastic oscillatien of a flat plate covered with
a mass was investigated. The plate is assumed to be piv-
oted about the axis P and elastically restrained against
torsion, so that it oscillates with a natural torsional

frequency =n_  (fig. 15).
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LJTABﬁﬁ Vi. Wing anduAilé;oﬁnbémping
G
No. Type £ = f%; dpta T = EE dg
o kg/w® | (2utle tm

1 bf 9 0,050 4.8 0.53 0.21 -

2 | He 8 .030 2.4 17 .14 -

3| L 78- ':.034;‘4: 69 .50 ;- .15 -

4 | He 60 ©L.0BL 346 W42 .19 2| 0,0029

5 | He 46 . |..047 7.2 .72 .19 .0039

6 | KL 1 A | .067 5.8 .84 .19 .0039

7 | Do 10 w041 | 7.2 .63 .19 .0017

g8 | L 102 .042 5.0 .46 .19 .

9 | AC 12 B | .147 5.4 1.67 .21 .0046
10 | Do 12 .088 5.1 .96 .31 -
11 | ¥ 28 078" 5e4 .92 .33 .0134
12 | 8 24 .058 4.0 .52 «20 .0062

13 | Ar 66 ©

Assume that axié P
tions at amplitude A 1
ratio of this forced oscillation is:

A _

B

execu%es fbrced vertical oscilla-
.and frequency

ns ‘The amplitude

/ng? g o]
n ke,+,g v
o Lo 4
n sl +_§ 1 P"gd

(14)

The-compérative‘factor % depends only on the mass
distribution and on the air density.
represent the effect of the co-oscillating air masses.

The second terms
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The three following limiting cases must be coﬁsidered:

o = 0, free pivoting about the axis P.

le n
%_= 4, phase angle @ = .
2« ng =1n, forced frequency = natural torsion.
frequency. : '
% :.& g€, phase angle Q= gw

3. 1, very high, great torsional stiffness.

% ~ & no? /1 4+ g%, phase angle ¢ ~ g.

nE

Similar relations hold for a plate with attached aile~
ron, which is pivoted with elastic restraint about the
hinge axis. With A ! (fig. 16) as the forced amplitude
of the alleron hinge, the anplitude ratio of the forced
oscillation is:

Ap _ Sy (Eﬂi ibh 1\

c n® ./
. > S (15)
2
N ng kB +p 17 by 2R :
R G 39
S . P N

9 \Ap 2 Az 4/ |

The values for the amplitude ratio in the three limit-
ing cases correspond to those given above., The cases be-
tween the first and second limiting cases are of particular
significance for the forced oscillation, because here the
phase angle lies in the second gquadrant; that is, it ap-
proaches the optimum phase angle which almost always lies
in the third quadrant. This i1s borne out by experience.
Flutter usually ocecurs either antigymmetrically -~ that is,
with freely oscillating ailerons, so to say - or symmet-
rically, at a frequency which lies above the natural oscil-
lation frequency of the ailerons.

The values of the amplitude ratio obtained from the
oscillation test are, on the whole, smaller than according
to limiting case 1, because the elasticity of the control
system shifts the oscillation mode toward limiting case 2.
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It should be noted that finite values of 9y are

L still: obtainable even if the aileron Cege lies in the

hinge. linse, because the co-~oscillating alr masses-exert a
mass—-coupling moment., This explains the fact that an ai-
leron, whose static c.gs lies ounly very little behind the
hinge "line, can still excite the oscillations to flutter

. (qf,,sectlon I1I,1,g,h, c)

‘Fo'r the customary method of estimating the critical
velocities, as well as for the new method using osciila-
tion tests and recommended hereinafter, it is important to
know whether flutter océurs in approximestely the same mode

as the oscillation.of equal frequency on the stand.,

" A very 31mple wa« i to vi uallze the wing tlp as a
mass~elast1c system., P051ng the tors1on of the wing tip
about the nodal 1ine at '

'_Whereby amplituda' B 'is'reai,fthe'inertia force moment is

2 . . . . ‘.
. & =« 0.B v° e}pt,
’ dt .
the elastic moment
ig ivi+ig

fo © .'BJ¥ fb_B e ‘;

In steady'oSCillation,'the sUm of tnese three monents

must always-disappear; that 1s.

- m B v3-+ 5 B e ? +.U =0

Separatlng th1s equatlon lnto real and 1mag1nary ‘parts,
affords ,

- 913‘P3‘+vf0‘3 cos g + M!' = 0
i fg Bsing+ 1 M" =0

¥ow, the aerodynamic exciattion could ocecur in such
a manner that the "blind component" M' = 0. Then the




38 ¥.A.C.A. Technical Memorandum No. 782

oscillation frequency with aerodynamic excitation would not
differ at all from the natural fregquency and fron the fre-
quency M!' = 0 of the oscillation test. In actual flutter,
it usually is H! < 0. TiHe phase angle most favorable for
the excitation lies generally in the third guadrant, as

will be shown below. The oscillation frequency is, as a
result, lower. On the other hand, the frequency increases
with the flying height because the air mass co-oscillating
with the wing, decreases with decreasing density.

The estimate will be fairly correct when %ssuming the
phase angle of the exciting moment at @ ~ 2257; that is,
posing

Ht =4'IJI“ e fo A sin 8

The average for 12 wings is sin g ~ 0.06, The change
of frequency in this case is ~3 percent; that is, still
within the resonance width An. Model experiments and
flight measurements in several instances proved that these
assumptions agree with the facts in approximate magnitude,
particularly for coupled wing and aileron oscillations.

Greater blind components and conseguently greater dis-
crepancies in frequency are to be expected when the damp-
ing is great and the phase angle of excitation is close to
180° or 360°. This is the case, e.ge, on model wings with-
out ailerons which are not dynamically similar; have high
frictional damping and oscillate with a low reduced fre-
gquencye The limiting case is the "oscillation" with O
fregquency - the aperiodic twisting off of the wing due to
static torsional instability. In this case,

¥t =~ £ B cos g.

0
" However, the wing flutter observed up to date, has
been so far from this limiting case that the assumption of

identical modes for actual flutter and for oscillation
test may be considered as a close approach, provided, of
course, the oscillation test is made with different meth-
ods of excitation since, for example, symmetrical modes
appear only indistinctly or not at all, with antisymmetri-
cal excitation. Furthermore, it should not be expected
that oscillation modes due to aerodynamic coupling, are
reproducible on the oscillation bench,
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.7 5. Critgrion for Flutter

Wlng flutter w1th constant amplitude~occurs ‘when the

.'energy of . damplng equals the 1nput of aerodynamic energy,
.-that isy When , :

Ghtm o s

If, for simplification, :we.sef. A' = .4, A" = .0, :we obtain
from equations (6), (12), (16) the condltlon under which
oscillations with .-constant- .amplitude occur;: - .

K (Ll W dpt) o+ B (Lg_+ W 0.4, dF') + G (13 + 0.dg)

+.A.B} _7,,;, + A_IB" 15 + A c’ 7,6 -'i-‘A c". Ly
+ (Bf 61 + BF TYY) 1, + (B' G" — BU" ') 1g = O (17)

As the-oscillation test is primarily a means for re—
cordlng the oscillation amplitudes, it is'advisable to .
consider the amplltudes B and ¢ as independent variables

and to set . . _ T , T L

.

B! =.§ cos @ C' = C cos '
‘B"'%,i.sin o o' = ¢ sin V¥
The phase angles ¢ and .V should be .so0 determined

that the energy assumes an ‘ektreme value. Partial differ-
entiation of (10) according to @ and V¥ gives:

. x\»'
N

A~ 14 sin $0 + lg cos @o)ﬁia e

(o sinlyo=9o)- 1o cos(¥o=0,)] =0 |
: BWomPolm Yerfal T (18)

;K(— lg sin W0+17 cos Vg) - ﬁ

[7'8” Sln(\vo (PO)“ 1!9 COS(WQ"CP )J

-

From (17) and (18) the llmltlng values of “the amp11~
tudes B and C may . be computed as funct1ons of .the reduced
frequency. Admittedly, the calculation s qulte complicat-

ed for three degrees of freedom.

_ Restrlcted to two : degrees of freedom, the results are
more simple and elucidating. This limitation is particu—
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larly permissible when the aileron is the main cause of
flutter and the rest of the wing simply oscillates with it.
Then the ensuing mode ¢f wing oscillation may be said to
"have only one degree of freedom. The wing then oscillates
about some fixed nodal line as in the oscillation test.

This has also been observed in model tests. The four fol-
lowing modes of oscillation with two degrees of freedom,
are investigated.

_1. ¢ = 0, wing bending + wing torsion.

2. §'='o, wing bending + aileron motion.

3, A =0, wing torsion about quartér—chord point
+ aileron motion.

4, L= - B!, B'" =0, wing torsion about three-

gquarter chord point + aile-
ron motion.

Writing the extreme conditions (18) in'(17) results
in:

-

—e —_ e
1o B (ly +0dp")+8 (L +0 0.4 dp")=ABJ/ 17 +15 = 0

in @ La cos @ ts
S o) = - ""__""""—""";"s os 0 - T
J 1SS Vi 1o +1g
LBy +wap!)+C (g + wdg)-AC /1 2 =0
1 l
sin Y, = ——«—Q—~——, cos VY, = - —a—JL———;-
Y 1541, J 1+,
. B (la+w 0.4 dF‘)+C (lg+wdg)-BC,/lso+1g° = 0 L (19)
-LB / 7’9
sin X, = - —pmmfe L cos ¥, = = —mofem—e
° V121 ° 1g%+1s?

40 B (1 +1,-1la+ 01ed dp') + & (1g+®dg)

. — 2 2
. lg — lg
sin Ko = - T B 2
. VA R 7S A O I A
lg = 1,

cos Lo= =

JGg= 1)+ (= 1, o
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Excepting lg .the energy coefficients are consist-

,ehtly pos1t1ve ‘thérefore, the optimum phase angles usu-

ally 1ie in the third quadrant. For nmode 2, the optimum
phase angle passes from the second into the third quad-—
rant at ® ~ 0e5; for the fourth mode, it passes from the
fourth into the thlrd quadrant at ® = 1,5,

6,4Energy Graphs
In order to circumscribe the influence of damping on
flutter, the calculatlon is based on the following extreme

values:

Ay =0 0.25 : 1.25°

g =0 A .0025 .025
The vaiues d =0 ére only of theoretical intereste.

The corresponding curves show the range within which
energy may be taken from the air stream.

AThe four oscillation modes finally afford energy
graphs, with four curves each, for the different damping
values. The abscissa is the logarithm of the amplitude
ratio; the ordinate is the reciprocal value of the reduced
frequency

L = X
) vl

In the following, the energy graphs (figs. 17—23) are
compared with experience.

a) Oscillation: Wing bending and wing torsion.~ Fig—~
ure 17 shows that the best condition for flutter exists at
the amplitude ratio A/B.= 0.9. This corresponds approxi-
mately to a pure elastic oscillation about the three—quar-.
ter chord point. The reduced frequency Wy = 0.85 is not
exceeded even with very low damping dp' = 0.25, and may
therefore be considered gas the practical limit. With
greater damping,.as it occurs particularly on models, the
upper limit drops to w = 0.52, so that in esp601a11y un~-
favorable cases, flutter in bendlng and torsion is likely
to occur. In the region w = 0.52 to 0.85, this type of
flutter has been analytically investigated on the Junkers
A 20 (reference 17)., The tapered wing has a chord of 2.36
m at the root and a mean chord of 170 m at the severely
oscillating tip. Referred to the wing chord of 1,70 m,

P
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the calculation gave in second approach, the reduced fre—-
quency ® = 0445,. The torsional stiffness of the thick
cantilever Junkers wing is so great that the critical
speed would still 1lie above the operating range even if
the reduced frequency were twice as hlgh

b) Oscillation mode: Wing bending and aileron motion.-
This mode is especially predominant in the He 46, XL 14,
AC 12E Do 12 M 28.

Flgures 18 and 19 are calculated for aileron chords
of T = 0.15 and 0,25, and show first that the flutter
zone becomes smaller as the aileron chord becomes greater.
According to (15) the backward c.g. position of the aile-~
ron affects the amplitude ratio. The reduced frequency
is so much higher as the amplitude ratio is smaller and
the aileron c.g. moves backward, although increases only
to @ ~ 2 with very small damping and W ~ 1 with very
great damping. Practically only the right-hand parts of
the curves come in guéstion, becausé the amplitude ratio
of the flutter oscillation cannot drop below a certain
value determined by the mass distribution of an unbalanced
aileron. The value A/C = 0.2 to 0.3 may be regarded as
the practical limit., ' ' : :

If the amplitude ratio is low the aileron damping ex-
erts a profound influence on the reduced frequency. A4t
A/C = 0425, eego, W 1increases from 1.13 to l.4 when the
ailleron damping drops from an initially high value of
0.025 to the low value of 0,0025. Flutter therefore con-
tinues until the speed has dropped to 80 percent of its
initial walue.

‘A comparison of the ¥ values as computed for several
airplanes with the energy graphs, discloses @ values
Whlch are of the same order of magnltude as the observed
onese As the interpolation for different aileron chords
and dampings by means of figures 18 zand 19 is not very ex-
act, a closer agreement can be obtained when establishing
a spec1al energy graph for each- alrplane, using the danmp-
ing values and amplitude ratios obtained in the oscilla~-
tion test and taking the - values from these graphs. The
essential factor i1s the correct reproduction of the damp-—
ing effect and the backward c. g. p031t10n of the alleron
on the flutter phenomenon.

S
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c) Oscillation mode: Wing torsion about a guarter-
chord point and aileron motion.—~ This-mode occurs approx-

“imately -in -models DP. 9,. He 8, He 60, T 102, 8 24, The

fact that 80 percent of these types of alrplanes were com-
nletely dectroyed proves that this modé. is by far the <
most dengerous. The ehergy graphs {figs. 20 and 21) show
that extremely hlgh values of thel reduced frequency. are:;
obtainable with small damping. If the. aileron damping
drops from an initially high vwlue to a small final value
after flutter starts, a large excess of energy is availa—
ble, which inevitably must lead to :complete failure.

One interesting feature is that such flutter is possi-
ble only within 'a limiteéd range of the amplitude ratio.
The practlcal upper limit is for the aileron chords::

T = 0.15 - B/C < 0487
T .= . .25 B/C < .45

This would stipulate a certaln minimum distance of back~ -
ward c.Ze. pOSltlon of the aileron. - :

An aileron with the rather conventional characteris-
tic;: T = 0s15; kg = 0,12 1;- sg = 0.06 15 ‘mg = 0425 7
p UV D has, for example, according to- (15), the %mpll-
tude ratlo ’ :

:_L éB:.: 8
1.2 © 0.19

Qi

if freely oscillating. According to figure 20, this value
lies exactly at the point of minimum critical velocity for
small wing damping, and gives ® = 1l.25. In the neighbor-
hood of amplitude ratio B/¢ = 0.2, reduced frequency
values up to ®'= 0,2 are possible even with maximun
damping. With small damping, very high w values are pos-
sible, as actually observed on the L 102 at the end of
flutter.

a) Oscillation mode: Wing torsion about three—~quarter
chord point + aileron motion.~ In this mode no reduced
frequency values in exXcess of W ~ 1.0 are possible, even
with small damping (figs. 22 and 23) This mode+-is there-
fore less dangerouss

The alleron chosen above as example, requlres twice
the unbalance (s = 0,12 Z) to give an amplitude ratio.

=
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which, in figure 22, meets the right-hand side of the curve
for ‘small ‘damping at W = 0,62, With the aileron c.g.
farther forward, ‘this value could be obtained only when the
amplltude "¢ is increased at the same time by resonance

of the control system, :

7. Application to a Practical Example

These energy graphs are supposed to give a general
"view of the new method of estimating the critical speed.
In actual cases, it usually involves osclllatlons at which
the nodal linés do not exactly correspond with the third -
nor with the fourth type of the illustrated examples. The
aileron chords also vary within a great range. However,
with the aid of the figures given in tables III and IV,
supplemented by the damping energy from the oscillation
test, a partlcular energy graph can be obtalned for each
1nd1v1dua1 case.

For example, .if the oscillation test shows that the
nodal line in the outer part of the wing lies at three-
guarter chord p01nt that the (angular) amplitude € of
the aileron motion equals twice the wing torsion amplitude
B, and that the wing damping factor is dp' = 0.25, then
figure 23 gives for B/C = 0.5

Il

1.06 to 1.10

g g

= 0.94 to 0.91

‘depending on the value of the aileron damping dpe In this

case the effect of dr on the reduced frequency is quite

smalle In fact, the reduced frequency will be lower than

the values found from the graph, bécause the assumption of
optimum phase angle 1s not exactly fulfilled. Even so; it
is possible to estimate the lowest critical speed at the-

observed mode of oscillation, which ‘may prove very valua—

ble under certaln c1rcumstances.

’ Preventat1ve measureS'agalnst flutter, particularly
mass balancing of the ailerons, show their effect in the
low aileron amplitude ¢ in the oscillation test. The am-
plitude ratlo B/C can then- 1ncrease ‘quite easily beyond
1, so that no flutter at all is possiblé for a nodal line
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.at the quarter-chord point (figs. 20 and 21) or at any
...rate that a substantlally higher value of lﬁD will be
‘found on the right<-hand branch of the curves in figures ~

18, 19 22 .and 23.

V. PREVENTION OF FLUTTER

‘The previously described conditlons fof oscillatlonA
modes of amplltude ratio anad damping -~ while admittedly
nec¢essary - do not, however,; constitute adequate conditions
for flutter. The thus estimated .critical speeds are there-
fore .on the safe side, ‘In the energy calculation, the prem-

ises were optimum’ phase angles whlch, as is known, are

closely. approached in many ¢ases in practice, espec1ally
with aileron oscillations. On the other hand, it is con-
ceivable that cases may occur Whereln the phase angle can-
not even approach the optimum value and in which no flut-
ter is at all possible, even if the oscillation modes as
recorded on thée oscillation bench, were indicative of flut-
ter.

The very simple form of the energy method compared
with the exact method, is simply the result of omitting
the elastic forces as well as the mass forces and their
distribution from the calculatién. But these forces are
far from negligible as far as the’ magnltude of phase angle
is concerned, To illustrate: It can be proved that with
two degrees of freedom - wing bending and wing tors1on -
flutter is possible only when the product

S %3 '
ms>TL b (20)

whereby'pm 'is the wing mass per unit length of the span

"and s the distance of the c. ge 0f the wing element behind

the gquarter~chord point., Applied to a cantilever wing
without alleron, this simply means shifting the ceZe 0f the

“individual wing sections near the quarter-chord points, in

order to prevent flutter at any air density p. Such wings,
although w1th allerons, are_found on. the M 20.

., The majority of flutter cases described in sectlon III,
probably could ‘have been: prevented by careful mass balanc-—
ing of the ailerons. This method, originally pointed out
by von Baumhauer and Koning (reference 3) in 1923, has fre-
quently’ been dlscussed slnce theﬁ in- the llterature. It is
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balanced allerons and that flutter was less frequent and 1le
less dangerous at the then comparatlvely low flying speeds.

On the other hand, mass—balanc1ng the ailerons after
an airplane is built, means an expense of weight, requir-
ing up to 0.5 percent(of the airplane weight aside from
increased drag. - Quite obviously, subsequent modification
of all existing types was therefore out of the question,

. particularly as the need for such measures did not seem
very apparent as far as the older types were concerned.

For the new types the DLA at first recommended mass
balancing; later this was incorporated into the airplane-
design specifications. An aileron originally designed for
mass balance is not much heavier than one designed without
balance. The purpose of mass balancing is to reduce the
aileron amplitude to harmless magnitude in all modes that
may cause flutter. For modes such as shown in figures 22
and 23, even a "partial mass balance" may be all that is
required,

In other cases, however, 1t is necessary to effect a
complete and careful balance because it requires a ten-~
times—-greater aileron amplitude in order to get out of the
range of the minimum of critical speed, according to the
diagramse. This fact has not always been sufficiently rec—
ognized.

TN A

The success of these preventative measures should be
checked on the oscillation bench, because even a complete-
ly balanced aileron may oscillate. Possible causes are:

1., Mass coupling due to the co~oscillating air mass,
particularly when the gap between wing and aile~
ron is small and the aileron is not aerodynamic-
ally balanced.

2e Kinematic coupling with complicated and indistinct
static structure of the cellule.

3e Lack of torsional stiffness of ailerons,

o 4, Natufal oscillations of the sgystem: left aileron,
T, controls, right aileron.,

'The latter oscillation is partlcularl dangerous
when coincident with a symmetrical natural mode of the
wingse In the vicinity of the resonance point, the phase
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angle of the aileron motion relative to the wing motion
changes profoundly with the frequency _.so that the phase
gle most favorable for flutter can easily occur. Reme~
dies are: changes in the natural frequency of “the aileron
control or artificial damping of the aileron deflection,

Some of the above cases prove, at any rate, that even
ailerons nearly or completely mass-balanced may occasion~
ally develop flutter, in which case, ‘however,. the reduced
frequency seems to be below the average, ieee W < 0.9,

If the aileron were to be considered as nonexisting
so far as flutter is concerned, they would have to have
not only zero amplitude on the oscillation bench but also
complete aerodynamic balance - at. least, within the range
of small angles:of attack and aileron deflection. It can
be proved theoretically that otherwise the circulation may
cause a purely aerodynamic coupling, which lowers the crit-
ical speed relative to that of the wing flutter in bending
and torsion, .

If 'all these condifions for preventlng aileron oscilla-
tion were fulfilled, the displacement of the c.ge. axis of
-the wing near to the quarter-chaord point, would practically
suffice for flutter prevention. Obv1ously, this is predicas-
ed on the assumption that the two-dimensional theory of wing
flutter is substantially correct, which cannot be summarily
taken for granted with compllcated wing shapes. The wing
stiffness of such. an airplane could be arbitrarily low,
provided no other lower stiffness limits existed.

| e

Such flutter prevention, however, requires a large
nunber of design changes of such a radical nature that in
many cases it would be tantamount to a new departure in
design methods. In view of this fact, it seemed more ex—
pedient to increase the wing stiffness as long 'as consiste-
ent. with minimum weight., This was the reason why this pre~
ventatlve measure was resorted to. at first. Greater stiff-
néss leads to higher wing frequencies and consequently

‘ higher critical speed. As a result, the flutter, while not
" altogether prevented is, however, moved up into a speed
range above--the highest speed which can be reached. 4 con-
"tributing factor was the consideration. that. the wing it-
self must have a certain minimum stiffness in order to pre—
.vent static torsiomnal instability add reversal of aileron
effect at nigh flying speed. ‘ - :

T&* .
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With further increase of speed, however, a point is

reached where the simple expedient of increased stiffness
is no longer compatible with the weight and where it will
be necessary to combine all known measures for the pre~
vention of flutter. -

Translation by the National Advisory
Committee for Aeronautics.

i,
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